Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 7

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 14

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 21

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 28

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 35

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 42

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 49

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 56

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 63

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 70

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 77

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 84

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 91

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 98

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 105

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 112

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 119

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 126

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 133

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 140

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 147

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 154

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 161

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 168

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 175

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 182

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 189

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 196

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 203

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 210

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 217

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 223

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php on line 228

Deprecated: Function create_function() is deprecated in /var/www/wp-content/themes/Newspaper/functions.php on line 68

Warning: Cannot modify header information - headers already sent by (output started at /var/www/wp-content/themes/Newspaper/includes/widgets/td_page_builder_widgets.php:161) in /var/www/wp-includes/feed-rss2.php on line 8
Myostatin – Redcon1 Online Official https://redcon1online.com The Highest State of Readiness Thu, 22 Jun 2017 16:32:33 +0000 en-US hourly 1 https://wordpress.org/?v=6.5.2 Sulforaphane to Inhibit Myostatin? 3 https://redcon1online.com/sulforaphane-inhibit-myostatin-3/ Sat, 24 Jun 2017 16:29:22 +0000 https://redcon1online.com/?p=4055 In closing, lets bring in its ability to act as a significant anti-inflammatory and anti-cancer agent. I would like to look at three pieces of literature. The first is on the inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors by Bali et al. The second is on  histone deacetylase inhibitors: signalling towards p21cip1/waf1 from Matthias Ocker. The third and final is entitled “A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase” from Myzak et al. The hydroxamic acid (HAA) analogue pan-histone deacetylase (HDAC) inhibitors (HDIs) LAQ824 and LBH589 have been shown to induce acetylation and inhibit the ATP binding and chaperone function of heat shock protein (HSP) 90. This promotes the polyubiquitylation and degradation of the pro-growth and pro-survival client proteins Bcr-Abl, mutant FLT-3, c-Raf, and AKT in human leukemia cells. HDAC6 is a member of the class IIB HDACs. It is predominantly cytosolic, microtubule-associated alpha-tubulin deacetylase that is also known to promote aggresome inclusion of the misfolded polyubiquitylated proteins. Here we demonstrate that in the Bcr-abl oncogene expressing human leukemia K562 cells, HDAC6 can be co-immunoprecipitated with HSP90, and the knock-down of HDAC6 by its siRNA induced the acetylation of HSP90 and alpha-tubulin. Depletion of HDAC6 levels also inhibited the binding of HSP90 to ATP, reduced the chaperone association of HSP90 with its client proteins, e.g. Bcr-Abl, and induced polyubiquitylation and partial depletion of Bcr-Abl. Conversely, the ectopic overexpression of HDAC6 inhibited LAQ824-induced acetylation of HSP90 and alpha-tubulin and reduced LAQ824-mediated depletion of Bcr-Abl, AKT, and c-Raf. Collectively, these findings indicate that HDAC6 is also an HSP90 deacetylase. Targeted inhibition of HDAC6 leads to acetylation of HSP90 and disruption of its chaperone function, resulting in polyubiquitylation and depletion of pro-growth and pro-survival HSP90 client proteins including Bcr-Abl. Depletion of HDAC6 sensitized human leukemia cells to HAA-HDIs and proteasome inhibitors (9.) Chromatin-modifying enzymes such as histone deacetylases (HDAC) facilitate a closed chromatin structure and hence transcriptional repression. HDAC are commonly affected in human cancer diseases. Thus, inhibition of HDAC represents a novel therapeutic approach. Several studies have shown that HDAC inhibitors strongly activate the expression of the cyclin-dependent kinase inhibitor p21(cip1/waf1) through (i) enhanced histone acetylation around the p21(cip1/waf1) promoter and (ii) the Sp1 sites on the p21(cip1/waf1) promoter releasing the repressor HDAC1 from its binding. p21(cip1/waf1) expression is regulated in a p53-dependent and p53-independent manner. The decision if p21(cip1/waf1) up-regulation results in cell cycle arrest or apoptosis, decides about the therapeutic efficacy of an anti-cancer treatment with HDAC inhibitors (10.) Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli sprouts, is a potent inducer of phase 2 detoxification enzymes and inhibits tumorigenesis in animal models. SFN also has a marked effect on cell cycle checkpoint controls and cell survival and/or apoptosis in various cancer cells, through mechanisms that are poorly understood. We tested the hypothesis that SFN acts as an inhibitor of histone deacetylase (HDAC). In human embryonic kidney 293 cells, SFN dose-dependently increased the activity of a beta-catenin-responsive reporter (TOPflash), without altering beta-catenin or HDAC protein levels. Cytoplasmic and nuclear extracts from these cells had diminished HDAC activity, and both global and localized histone acetylation was increased, compared with untreated controls. Studies with SFN and with media from SFN-treated cells indicated that the parent compound was not responsible for the inhibition of HDAC, and this was confirmed using an inhibitor of glutathione S-transferase, which blocked the first step in the metabolism of SFN, via the mercapturic acid pathway. Whereas SFN and its glutathione conjugate (SFN-GSH) had little or no effect, the two major metabolites SFN-cysteine and SFN-N-acetylcysteine were effective HDAC inhibitors in vitro. Finally, several of these findings were recapitulated in HCT116 human colorectal cancer cells: SFN dose-dependently increased TOPflash reporter activity and inhibited HDAC activity, there was an increase in acetylated histones and in p21(Cip1/Waf1), and chromatin immunoprecipitation assays revealed an increase in acetylated histones bound to the P21 promoter. Collectively, these findings suggest that SFN may be effective as a tumor-suppressing agent and as a chemotherapeutic agent, alone or in combination with other HDAC inhibitors currently undergoing clinical trials (11.)

Sulforaphane’s ability to do everything we just discussed should make you want to start eating your broccoli as well as possibly supplementing with a good sulforaphane product (which is very few and fair between.) In terms of an applicable dosage, it seems that right around the 30mg per day mark is proven in literature to be beneficial (with some even dosing it up to double based on their body weight being higher.) Sulforaphane’s benefits are endless and is a must have health AND ergogenic aid supplement for any serious competitor (or at least it is in my eyes.)

References

  1. Protein oxidation and aging. E. R. Stadtman. Science. 1992 (https://www.ncbi.nlm.nih.gov/pubmed/1355616)
  2. Sulforaphane Activates Heat Shock Response and Enhances Proteasome Activity through Up-regulation of Hsp27. Nanqin Gan, Yu-Chieh Wu, Mathilde Brunet, Carmen Garrido, Fung-Lung Chung, Chengkai Dai, Lixin Mi. J Biol Chem. 2010 (https://www.ncbi.nlm.nih.gov/pubmed/20833711)
  3. Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells. Mi-Kyoung Kwak, Jeong-Min Cho, Bo Huang, Soona Shin, Thomas W. Kensler. Free Radic Biol Med. 2007 (https://www.ncbi.nlm.nih.gov/pubmed/17664144)
  4. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. Ju-Hee Lee, Myung-Hee Moon, Jae-Kyo Jeong, Yang-Gyu Park, You-Jin Lee, Jae-Won Seol, Sang-Youel Park. Biochem Biophys Res Commun. 2012 (https://www.ncbi.nlm.nih.gov/pubmed/22982310)
  5. Identification and role of the basal phosphorylation site on hormone-sensitive lipase. A. J. Garton, S. J. Yeaman. Eur J Biochem. 1990 (https://www.ncbi.nlm.nih.gov/pubmed/2165906)
  6. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. Mandeep Pinky Gaidhu, Sergiu Fediuc, Rolando Bacis Ceddia. J Biol Chem. 2006 (https://www.ncbi.nlm.nih.gov/pubmed/16816404)
  7. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells. Huitao Fan, Rui Zhang, Dawit Tesfaye, Ernst Tholen, Christian Looft, Michael Hölker, Karl Schellander, Mehmet Ulas Cinar. Epigenetics. 2012 (https://www.ncbi.nlm.nih.gov/pubmed/23092945)
  8. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. Chang Joo Oh, Joon-Young Kim, Ae-Kyung Min, Keun-Gyu Park, Robert A. Harris, Han-Jong Kim, In-Kyu Lee. Free Radic Biol Med. 2012 (https://www.ncbi.nlm.nih.gov/pubmed/22155056)
  9. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. Purva Bali, Michael Pranpat, James Bradner, Maria Balasis, Warren Fiskus, Fei Guo, Kathy Rocha, Sandhya Kumaraswamy, Sandhya Boyapalle, Peter Atadja, et al. J Biol Chem. 2005 (https://www.ncbi.nlm.nih.gov/pubmed/15937340)
  10. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Matthias Ocker, Regine Schneider-Stock. Int J Biochem Cell Biol. 2007 (https://www.ncbi.nlm.nih.gov/pubmed/17412634)
  11. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Melinda C. Myzak, P. Andrew Karplus, Fung-Lung Chung, Roderick H. Dashwood. Cancer Res. 2004 (https://www.ncbi.nlm.nih.gov/pubmed/15313918)
]]>
Sulforaphane to Inhibit Myostatin? 2 https://redcon1online.com/sulforaphane-inhibit-myostatin-2/ Sat, 24 Jun 2017 04:00:29 +0000 https://redcon1online.com/?p=4052 With that in mind, we can move further onto its interactions with actual fat mass (directly correlated to its potential to increase the rate of lipolysis. Lee et al (4) looked at how sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. “Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes.” To understand this more in depth I suggest reading the works of Garton et al as well as Gaidhu et al on “Identification and role of the basal phosphorylation site on hormone-sensitive lipase” and “5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes” (5, 6.)

Now, the moment you’ve been waiting for, MYOSTATIN INHIBITION! I’m sure many of you have skipped ahead to this part so I wont waste anymore time digging into the literature! Sulforaphane seems to repress myostatin transcription and suppression within skeletal muscle satellite cells. Fan et al discusses this relationship in great detail. Satellite cells function as skeletal muscle stem cells to support postnatal muscle growth and regeneration following injury or disease. There is great promise for the improvement of muscle performance in livestock and for the therapy of muscle pathologies in humans by the targeting of myostatin (MSTN) in this cell population. Human diet contains many histone deacetylase (HDAC) inhibitors, such as the bioactive component sulforaphane (SFN), whose epigenetic effects on MSTN gene in satellite cells are unknown. Therefore, we aimed to investigate the epigenetic influences of SFN on the MSTN gene in satellite cells. The present work provides the first evidence, which is distinct from the effects of trichostatin A (TSA), that SFN supplementation in vitro not only acts as a HDAC inhibitor but also as a DNA methyltransferase (DNMT) inhibitor in porcine satellite cells. Compared with TSA and 5-aza-2′-deoxycytidine (5-aza-dC), SFN treatment significantly represses MSTN expression, accompanied by strongly attenuated expression of negative feedback inhibitors of the MSTN signaling pathway. miRNAs targeting MSTN are not implicated in posttranscriptional regulation of MSTN. Nevertheless, a weakly enriched myoblast determination (MyoD) protein associated with diminished histone acetylation in the MyoD binding site located in the MSTN promoter region may contribute to the transcriptional repression of MSTN by SFN. These findings reveal a new mode of epigenetic repression of MSTN by the bioactive compound SFN. This novel pharmacological, biological activity of SFN in satellite cells may thus allow for the development of novel approaches to weaken the MSTN signaling pathway, both for therapies of human skeletal muscle disorders and for livestock production improvement (7.) Even furthermore CJ et al states “Sulforaphane (SFN) is a dietary isothiocyanate that exerts chemopreventive effects via NF-E2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). This work was undertaken to evaluate the effects of SFN on hepatic fibrosis and profibrotic transforming growth factor (TGF)-β/Smad signaling, which are closely associated with oxidative stress. SFN suppressed TGF-β-enhanced expression of α-smooth muscle actin (α-SMA), a marker of hepatic stellate cell (HSC) activation, and profibrogenic genes such as type I collagen, fibronectin, tissue inhibitor of matrix metalloproteinase (TIMP)-1, and plasminogen activator inhibitor (PAI)-1 in hTERT, an immortalized human HSC line. SFN inhibited TGF-β-stimulated activity of a PAI-1 promoter construct and (CAGA)(9) MLP-Luc, an artificial Smad3/4-specific reporter, in addition to reducing phosphorylation and nuclear translocation of Smad3. Nrf2 overexpression was sufficient to inhibit the TGF-β/Smad signaling and PAI-1 expression. Conversely, knockdown of Nrf2, but not inhibition of HO-1 or NQO1 activity, significantly abolished the inhibitory effect of SFN on (CAGA)(9) MLP-Luc activity. However, inhibition of NQO1 activity reversed repression of TGF-β-stimulated expression of type I collagen by SFN, suggesting the involvement of antioxidant activity of SFN in the suppression of Smad-independent fibrogenic gene expression. Finally, SFN treatment attenuated the development and progression of early stage hepatic fibrosis induced by bile duct ligation in mice, accompanied by reduced expression of type I collagen and α-SMA. Collectively, these results show that SFN elicits an antifibrotic effect on hepatic fibrosis through Nrf2-mediated inhibition of the TGF-β/Smad signaling and subsequent suppression of HSC activation and fibrogenic gene expression” (8.)

References

  1. Protein oxidation and aging. E. R. Stadtman. Science. 1992 (https://www.ncbi.nlm.nih.gov/pubmed/1355616)
  2. Sulforaphane Activates Heat Shock Response and Enhances Proteasome Activity through Up-regulation of Hsp27. Nanqin Gan, Yu-Chieh Wu, Mathilde Brunet, Carmen Garrido, Fung-Lung Chung, Chengkai Dai, Lixin Mi. J Biol Chem. 2010 (https://www.ncbi.nlm.nih.gov/pubmed/20833711)
  3. Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells. Mi-Kyoung Kwak, Jeong-Min Cho, Bo Huang, Soona Shin, Thomas W. Kensler. Free Radic Biol Med. 2007 (https://www.ncbi.nlm.nih.gov/pubmed/17664144)
  4. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. Ju-Hee Lee, Myung-Hee Moon, Jae-Kyo Jeong, Yang-Gyu Park, You-Jin Lee, Jae-Won Seol, Sang-Youel Park. Biochem Biophys Res Commun. 2012 (https://www.ncbi.nlm.nih.gov/pubmed/22982310)
  5. Identification and role of the basal phosphorylation site on hormone-sensitive lipase. A. J. Garton, S. J. Yeaman. Eur J Biochem. 1990 (https://www.ncbi.nlm.nih.gov/pubmed/2165906)
  6. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. Mandeep Pinky Gaidhu, Sergiu Fediuc, Rolando Bacis Ceddia. J Biol Chem. 2006 (https://www.ncbi.nlm.nih.gov/pubmed/16816404)
  7. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells. Huitao Fan, Rui Zhang, Dawit Tesfaye, Ernst Tholen, Christian Looft, Michael Hölker, Karl Schellander, Mehmet Ulas Cinar. Epigenetics. 2012 (https://www.ncbi.nlm.nih.gov/pubmed/23092945)
  8. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. Chang Joo Oh, Joon-Young Kim, Ae-Kyung Min, Keun-Gyu Park, Robert A. Harris, Han-Jong Kim, In-Kyu Lee. Free Radic Biol Med. 2012 (https://www.ncbi.nlm.nih.gov/pubmed/22155056)
  9. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. Purva Bali, Michael Pranpat, James Bradner, Maria Balasis, Warren Fiskus, Fei Guo, Kathy Rocha, Sandhya Kumaraswamy, Sandhya Boyapalle, Peter Atadja, et al. J Biol Chem. 2005 (https://www.ncbi.nlm.nih.gov/pubmed/15937340)
  10. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Matthias Ocker, Regine Schneider-Stock. Int J Biochem Cell Biol. 2007 (https://www.ncbi.nlm.nih.gov/pubmed/17412634)
  11. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Melinda C. Myzak, P. Andrew Karplus, Fung-Lung Chung, Roderick H. Dashwood. Cancer Res. 2004 (https://www.ncbi.nlm.nih.gov/pubmed/15313918)
]]>